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This work evaluates several approaches for sharp phase interface-capturing in computa-
tions of multi-phase mixture flows. Attention is focused on algebraic interface-capturing
strategies that fit directly within a finite-volume MUSCL-type framework, in which dimen-
sion-by-dimension reconstruction of interface states based on extrapolated fluid properties
is the norm. In this scope, linear, sine-wave, and tangent hyperbola volume-fraction recon-
structions are examined for a range of problems, including advection of a volume-fraction
discontinuity, the Rayleigh–Taylor instability, a dam-break problem, an axisymmetric jet
instability, the Rayleigh instability, and flow within an aerated-liquid injector. An implicit
dual-time stepping approach, applied directly to a preconditioned form of the governing
equations, is used for time-advancement. The results show that the sharpening strategies
are successful in providing two-to-three-cell capturing of volume-fraction discontinuities.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The development of strategies for sharply capturing the evolution of immiscible, two-phase flows has been an active re-
search area in computational fluid dynamics for decades. Computational strategies have been divided into two main classes:
Lagrangian tracking techniques [1–3] and Eulerian capturing methods [4–10], which evolve a marker function to distinguish
among the phases. The volume-of-fluid method (VOF) [4–7], in its various forms, offers the possibility of exactly guarantee-
ing the conservation of mass or volume, at the cost of a significant increase in coding complexity, particularly in three dimen-
sions. Level-set [8–13] methods evolve the signed distance function, instead of a Heaviside marker function, and are thus less
susceptible to numerical diffusion errors as the distance function is smooth near the interface. Curvature of the interface can
also be calculated more accurately using a level-set approach, and surface-tension effects [9] can be incorporated more pre-
cisely as a result. As the distance function does not obey a conservation law, there is no guarantee that mass/volume will be
conserved when the level-set function is advected. Complicated re-initialization procedures [9] can reduce these errors to
acceptable levels, as can hybrid approaches [10,11] that combine elements of VOF techniques. Ghost-fluid strategies
[12–14] have been shown to provide extremely sharp-interface-capturing when used with level-set techniques. More
recently, there has been a trend to simplify VOF procedures by introducing smooth basis functions that better represent a
discontinuity on the mesh-scale but do not require geometric reconstruction [15–17]. These techniques appear suitable
for incorporation into codes that adopt conventional dimension-by-dimension upwinding methods.

Another trend in modern computational fluid dynamics has been the development of flow solvers based on the use
of time-derivative preconditioning strategies. If implemented correctly, such techniques offer the potential to extend
‘density-based’ CFD codes to operate effectively at all flow speeds. At low Mach numbers, the schemes revert to variants
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Fig. 3. Distortion of a circle in a rotational velocity field: (a) PPM, (b) linear, (c) sine wave, (d) THINC-AR, (e) THINC-M, (f) THINC-EM) (dark solid black:
initial solution; solid black: 2000 iterations; dark dashed black: 4000 iterations).

Table 2
Errors for Zalesak’s test problem.

Scheme/grid size 50 � 50 100 � 100 200 � 200
PPM 3.53 � 10�2 1.80 � 10�2 9.30 � 10�3

Linear 1.60 � 10�2 7.34 � 10�3 5.73 � 10�3

Sine 1.51 � 10�2 6.93 � 10�3 5.41 � 10�3

THINC-AR 2.37 � 10�2 9.54 � 10�3 4.78 � 10�3

THINC-M 1.56 � 10�2 5.60 � 10�3 2.94 � 10�3

THINC-EM 1.63 � 10�2 5.74 � 10�3 2.94 � 10�3
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interface is described by the function yðxÞ ¼ 1:95þ 0:05 cosð2pxÞ, the density of the heavier fluid is 1.225 kg/m3, the density
of the lighter fluid is 0.1694 kg/m3, and the viscosity for both fluids is set equal to 0.00313 kg/(m-s). The surface tension is set
to zero for these calculations, and the pressure field is in hydrostatic equilibrium. The time step is 0.00125 s, which leads to
Dxmin

Dt equal to 6.25 in Eq. (21). Volume-fraction contours for a = 0.05, a = 0.5, and a = 0.95 are shown at times t = 2 s, 7 s, 8 s,
and 9 s for THINC-EM in Fig. 4. The predictions compare well with those presented in [3,6] using VOF-type methods. Fig. 5
compares predictions of volume fraction at t = 12 s (45 contours, ranging from 0 to 1) for the PPM, linear, THINC-M, and
THINC-EM reconstruction methods. The fact that THINC-EM is generally more dissipative than either the linear reconstruc-
tion or THINC-M is apparent, as those schemes eventually capture a secondary instability on the liquid jet surface and
provide a sharper, though asymmetric rendering of the streak-like structures present as the heavier fluid disperses within
the lighter fluid. Table 3 shows the percent mass error for the heavier and lighter fluids. The maximum error occurs just after
initialization for all cases and its relatively high value may be due to the process of adjusting the analytic interface profile to a
form consistent with the mesh resolution.

Chandrasekhar [30] presented the dimensionless growth rate n ¼ n� m=g2
	 
1=3 for the Rayleigh–Taylor instability as a func-

tion of the dimensionless wave number k ¼ k� m2=g
	 
1=3, where n� is the growth rate and k� is the wave number. The solution

is parameterized by the Atwood number q2 � q1ð Þ= q2 þ q1ð Þ(where q2 > q1Þ with the two fluids having equal kinematic
viscosities and neglecting surface tension. An additional set of calculations of the Rayleigh–Taylor instability was performed



Fig. 4. Evolution of interface in Rayleigh–Taylor instability (THINC-EM).

Fig. 5. Evolution of interface in Rayleigh–Taylor instability – effect of reconstruction scheme (t = 12 s).

Table 3
Percent mass error for Rayleigh–Taylor instability.

Scheme Percent mass error (light) Percent mass error (heavy)

Max Average Max Average

PPM 0.252 0.117 0.239 0.112
Linear 0.252 0.095 0.239 0.091
THINC-M 0.252 0.110 0.239 0.105
THINC-EM 0.252 0.089 0.239 0.085
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to compare with Chandrasekhar’s solution. Following the modeling of Daly [31] and Pan and Chang [15], the interface
position is fixed and an initial velocity is assigned to the two fluids as
u ¼
pADy
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Fig. 6. Disturbance amplitude versus time (Rayleigh–Taylor instability; THINC-EM).

Fig. 7. Dimensionless growth rate versus Reynolds number (Rayleigh–Taylor instability; THINC-EM).
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where K ¼ 2L is the wavelength of the perturbation, A is the amplitude, and Dy is the mesh spacing in the vertical direction.
For the case under consideration, L ¼ 0:02, A ¼ 0:1, Dy ¼ 5 � 10�4, the height of the domain is 6L, the Atwood number is 1/3,
the gravitational acceleration is set to unity, and the grid contains 40 � 120 cells. Three Reynolds numbers were tested,
Re = 39, 72, and 176, where the Reynolds number is defined as Re ¼ K3=2g1=2

m . Kinematic viscosities corresponding to these
Reynolds numbers are m ¼ 2:05� 10�4; 1:11 � 10�4; and 4:54 � 10�5 m2=s.

After an initial transient, the exponential growth rate becomes linear and is the slope of the curve of a log of the amplitude
versus time plot, where the amplitude of the instability is defined as the average absolute displacement at the bounding edge
and line of symmetry at the center of the wave. Numerical results for the three Reynolds numbers using the THINC-EM
method are presented in Fig. 6. The dimensionless growth rate is presented versus Reynolds number in Fig. 7. The results
compare well with that of Chandrasekhar [30].
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7.3. Dam-break problem

Another classical test case is the dam-break problem. In our variation, we follow [11] and consider a 6 m � 1.5 m rect-
angular domain discretized using a uniformly spaced 480 � 128 cell mesh. Liquid water (ql=1000 kg/m3, ll=1e-3 kg/(m-s)) is
placed inside a rectangle extending from X = 0 m to X = 1 m and from Y = 0 m to Y = 1 m. Air (ql = 1.0 kg/m3, ll=1e-5 kg/(m-s)
is located everywhere else, and hydrostatic equilibrium is enforced for the pressure field. The time step is 0.0002 s (Dxmin

Dt = 80
Fig. 8. Predictions of column height (a) and surge (b) for two-dimensional dam-break problem.

Fig. 9. Time evolution of liquid volume fraction for two-dimensional dam-break problem (THINC-EM).



Fig. 10. Effect of different reconstruction schemes (t = 2.56 s).

Table 4
Percent mass errors for dam-break problem.

Scheme Percent mass error (gas) Percent mass error (liquid)

Max Average Max Average

PPM 0.002 0.001 0.015 0.009
Linear 0.010 0.004 0.077 0.036
THINC-M 0.006 0.003 0.044 0.025
THINC-EM 0.006 0.004 0.044 0.028
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in Eq. (21)). No-slip boundary conditions are applied on all surfaces. Fig. 8(a) and (b) compare the interface position along the
far-left wall and along the bottom wall with data from Martin and Moyce [32]. The interface position is normalized with
respect to its initial value (L), while the time is non-dimensionalized by multiplying it by

ffiffiffiffiffi
gL

p
, with g = 9.81 m/s2. Good

agreement is indicated initially but some deviations appear for later times. These may be the result of insufficient resolution
of frictional effects. Fig. 9 presents snapshots of the evolution of the water front at different time instances for the THINC-EM
scheme. The liquid volume fraction (45 contours, ranging from 0 to 1) is shown. Weak instabilities present on the surface of
the liquid sheet are excited as the colliding water stream detaches from the right side and upper walls, producing a compli-
cated Kelvin–Helmholtz type pattern at later times. Filaments of fluid are periodically detached from the evolving sheets,
and several instances of ‘mixed-out’ regions of fluid becoming more coherent are present at later times. Fig. 10 compares
snapshots at t = 2.56 s from the PPM, linear, THINC-M, and THINC-EM reconstructions. The PPM reconstruction is clearly
more dissipative, while the others display a sharp capturing of the breaking wave. Table 4 shows that the percent mass errors
for the gas and liquid phases are less than 0.1% over the 20,000-iteration duration of the calculations. Snapshots from a three-
dimensional calculation of the dam-break problem are shown in Fig. 11. The computational domain is extended 0.5 m in the
Z-direction, and the mesh contains 480 � 128 � 21 cells. The breaking wave displays a clear three-dimensional structure, and
the calculation captures the shedding of small pockets of material as the breaking wave ‘splashes’ onto the incoming stream.

7.4. Axisymmetric jet instability

The next case considered corresponds to calculations of interfacial instability growth along the surface of a liquid jet, exit-
ing into quiescent gas. This case corresponds to that considered computationally by Liang and Ungewitter [33] (though with
a much more severe density variation in the present case) in their studies of wind-induced jet instability using volume-of-
fluid methods. Chigier and Reitz [34] present an excellent review article that surveys key developments in primary atomiza-
tion theory. One item emphasized is the use of linear stability analysis to predict the initial growth of instabilities along a



Fig. 11. Isosurfaces of a=05 for three-dimensional dam-break problem (THINC-EM).
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phase interface. Such analyses can be conducted under various assumptions, and the most detailed theories consider shear
within the gas and liquid phases, as well as the interfacial tension, as driving forces for instability growth. Results are gen-
erally correlated in terms of Weber and Ohnesorge numbers, the former representing the ratio of inertial forces to interfacial
forces, and the latter representing the ratio of viscous forces to interfacial forces. Many theories for primary atomization use
the wavelength of the most amplified disturbance (for fixed Weber and Ohnesorge numbers) as being proportional to the
diameter of the droplets that are initially separated from the jet. The dispersion equation governing linear wave growth
has been solved numerically by Reitz [35], and the results for wavelength of the most amplified disturbance and its growth
rate curve-fitted as functions of Weber and Ohnesorge numbers:
K
a
¼ 9:02

ð1þ 0:45Z0:5Þð1þ 0:4ðZWe0:5
v Þ

0:7Þ
ð1þ 0:87We1:67

v Þ0:6
; ð51Þ
where a is the initial jet radius, K is the wavelength of the most amplified disturbance, Wev ¼ qvU2a=r is the Weber number
based on the gas-phase density and the relative velocity U, Z ¼We0:5

l =Rel We¼l qlU
2a=r, Re¼l qlUa=ll, and r is the interfacial

tension.
The growth rate X determines the rate at which an initial perturbation with amplitude g grows in time, assuming an

exponential dependence: gðtÞ ¼ go expðXtÞ with
X
qla

3

r

� �
¼ 0:34þ 0:38We1:5

v

ð1þ ZÞð1þ 1:4ðZWe0:5
v Þ

0:6 ð52Þ
To test the ability of the schemes to replicate the initial stages of jet instability, a test case involving an axisymmetric water-
jet exiting into quiescent air is considered. The domain extends 0.01 m in the X-direction and 0.02 m in the Y-direction and the
jet radius is 0.005 m. Periodic boundary conditions are enforced at X = 0 m and X = 0.01 m, thus simulating the evolution of a
temporal disturbance. The velocity of the gas portion is set to zero initially, and the liquid velocity is set to 7.694 m/s. This
value corresponds to the solution of Eq. (51) for the case where Z = 0 (inviscid flow) and K=2 a=0.01 m. For this case, the
growth rate is estimated to be about 100 s�1 from Eq. (52). A grid containing 238 � 272 cells, uniformly spaced over a
0.01 � 0.01 domain but stretching vertically to the upper boundary located at Y = 0.02 m is used, and the calculations were
evolved at a time step of 3e-6 s (Dxmin

Dt = 20 in Eq. (21)). The calculations were initialized by specifying the normal velocity
component in the liquid jet (Y < 0.005 m) as [33]
vðx; yÞ ¼ 0:001 sin
2p
A

x
� �

y
0:005

� �
ð53Þ



Fig. 12. Normalized disturbance amplitude versus time.

Fig. 13. Evolution of jet surface shape.
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Fig. 12 presents normalized amplitudes for the PPM and THINC-EM reconstructions. Calculations performed using the lin-
ear and the THINC-M reconstructions diverged. Amplitudes were determined by averaging the maximum and minimum
deviations from the nominal interface position at Y = 0.005 m as extracted at each time step. The growth rate is the slope
of the log of the normalized amplitude; a true linear evolution of the disturbance would yield a constant slope versus time.
Asymptotic growth rates (indicated somewhat subjectively by linear curve fitting over the interval from t = 0.0075 to
t = 0.03 s) indicate that the PPM and the THINC-EM results are reasonably close to the theoretical value of 100 s�1. At later
times, the growth rate slows for both methods, and the wavelength of the interface disturbance increases. The effect of
THINC-EM in maintaining a sharp liquid–vapor interface is shown clearly in Fig. 13, which plots contours of a = 0.05,
a = 0.5, and a = 0.95 at several instances in time. The gray shaded region indicates the initial position of the jet. At the last
time instance shown, the wave length of the disturbance in the THINC-EM calculation is near the theoretical value of 0.01 m,
while it is shorter for the PPM calculation.
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7.5. Surface tension – driven instability (Rayleigh problem)

In this case and the next, only the THINC-EM scheme is used. To validate the implementation of the continuum surface
force (CSF) model of [26], the evolution of a cylindrical (2D) and a spherical (3D or axisymmetric) water drop in a quiescent
fluid is considered. A water drop of radius 0.0025 m is embedded in a quiescent, constant-pressure fluid. The expected re-
sponse is a rise in the bubble pressure to theoretical values of pdrop � p1 ¼ r

Rdrop
for a cylindrical drop and pdrop � p1 ¼ 2 r

Rdrop
for

a spherical drop. Fig. 14 shows that the theoretical result is reached in all cases and remains approximately constant over
time. As is common for a CSF model, ‘parasitic velocity currents’ [26] are observed in all cases, but these perturbations do
not amplify to the point that the calculation is destabilized and the structure of the bubble is disrupted.

Chandrasekhar [30] presents an analytic solution to the Rayleigh problem involving the evolution of a surface instability
on an axisymmetric cylindrical jet due to surface-tension effects. The initial amplitude, A0, of the disturbance will increase
with time due to surface tension, r, according to the relation A ¼ A0en�t , where n� is the growth rate. The analytic solution is
n�2 ¼ r
a3q

kI1ðkÞ
I0ðkÞ

1� k2
� �

; ð54Þ
where I1ðkÞ and I0ðkÞ are modified Bessel functions, a is the jet radius and q is the density of the liquid. The solution is nor-
malized, resulting in a dimensionless growth rate, n ¼ n�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r= a3qð Þ

p
, for a given dimensionless wave number k ¼ k�a, where

the wave number k� ¼ 2p=K.
In the present work, an axisymmetric cylindrical water-jet of radius a ¼ 0:001 m is placed in a domain of radius l ¼ 3a and

varying axial length K, the remainder being filled with air. The profile of an initial perturbation of the water-jet surface given
as
/ ¼ a� r � A0 cos 2px=Kð Þ ð55Þ
where / is the interface location and A0 ¼ 0:01a. The initial velocity is set to zero, and the initial pressure is constant. The
grid consists of 101 radial nodes and a varying number of axial nodes (depending on KÞwith Dx ¼ Dr. A symmetric boundary
condition is used at the axis of the jet, a constant-pressure condition is enforced at the r ¼ l boundary, and periodic boundary
conditions are applied at x ¼ 0 and x ¼ K, following the numerical work of Menard et al. [13].

Qualitative predictions of the time history of the instability, showing the eventual breakup of the jet, are presented in
Fig. 15 for K ¼ 4a ¼ 0:004 m. Fig. 16 presents a comparison of the predicted disturbance growth rate with the analytic solu-
tion of Eq. (54). Dimensionless wave numbers were varied by holding the radius of the jet constant while varying the length
of the jet. The computational results are in close agreement with the analytic solution for each of the five wave numbers.

7.6. ‘In–out’ aerated-liquid injector

The last test case considered in this study involves flow within an aerated-liquid (or ‘barbotage’) fuel injector. Devices of
this type have been tested at the Air Force Research Laboratory for use in accelerating primary jet breakup in hydrocarbon-
fueled scramjet engines. A schematic of an ‘in–out’ injector, in which aerating gas is injected through a central tube into a
co-flowing liquid stream, is shown in Fig. 17. The specific configuration considered [36] injects nitrogen gas through the end
Fig. 14. Normalized droplet pressure versus time – static drop calculation (THINC-EM).



Fig. 15. Time evolution of jet surface (Rayleigh instability; THINC-EM ).

Fig. 16. Dispersion relation for Rayleigh instability (THINC-EM).
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of the tube, rather than through an array of holes as shown in the schematic. The operation of an aerated-liquid injector of
this type is parameterized by the gas-to-liquid mass ratio (GLR). Low values of the GLR (0.15% or less) result in the intermit-
tent passage of slugs of gas and liquid through the injector. Higher values lead to a core-annular flow structure in which the
aerating gas pushes the liquid toward the walls of the discharge tube. Both situations have been simulated numerically using
a compressible two-phase mixture model [25]. In the present work, we adopt the incompressible flow model described
above to simulate a case for which the GLR is approximately 0.115%. Inlet gas velocities for the two cases are 2.34 m/s
and 4.69 m/s, and the liquid injection velocity is initially set to 0.586 m/s. Bernoulli-inflow boundaries are applied at the
liquid water inlet, whereas a fixed volume flow rate is applied at the inlet of the gas injection tube. The actual inflow



Fig. 17. Schematic of ‘in–out’ aerated-liquid injector (from Ref. [36]).

Fig. 18. Evolution of vapor mass within ‘in–out’ aerated-liquid injector (THINC-EM).
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conditions for the liquid jet (and thus the GLR value) will evolve over time. A two-dimensional analogue of the three-dimen-
sional injector described in [36] is used, with the circular tube replaced by a slot. The mesh contains 294,000 interior mesh
cells, distributed over 30 blocks. The calculations were evolved at a time step of 1e-6 s (Dxmin

Dt =20 in Eq. (21)) for a period of
0.06 s using the THINC-EM scheme.

Fig. 18 compares the vapor mass within the system to the value resulting from the time integration of the vapor mass
flow rate. A perfect correlation should be achieved prior to the exiting of the first slug of vapor from the tube. This does



Fig. 19. Mass flow rates versus time in ‘in–out’ aerated-liquid injector (THINC-EM).

Fig. 20. Evolution of vapor volume fraction in ‘in–out’ aerated-liquid injector (GLR = 0.115%, THINC-EM).
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not happen exactly, as discrete bubble-collapse events induce very high velocities (	60 m/s) that limit the ability of the
time-advancement method to converge the sub-iterations properly. Fig. 19 presents inlet and outlet vapor mass flow rates
versus time. The outflow mass flow rate shows features characteristic of a core-annular structure in the initial response and a
slugging response at later times. Fig. 20 presents discrete snapshots of vapor volume fraction. Bubbles are initially formed in
the relatively slow-moving fluid upstream of the discharge tube. These progress rapidly through the discharge tube and are
deformed and fragmented by shearing stresses. At later times, the bubble shapes are qualitative agreement with images for
GLR 	0.08% from [34]. The predicted bubble shapes are not as rounded as those observed in the images. This might be attrib-
uted to the relative reduction in surface-tension force in the two-dimensional calculation, the presence of side walls in the
experiment, and differences in slot injection (modeled) versus injection through a round orifice.
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8. Conclusions

Several algebraic interface-sharpening techniques, suitable for incorporation as part of a dimension-by-dimension MUS-
CL-type upwinding strategy, have been derived and studied in this work. Linear and sine-wave reconstructions of the volume
fraction within a mesh cell have been developed, as have modified versions of the Tangent Hyperbola for interface-capturing
(THINC) scheme of Xiao et al. [16]. Techniques for blending the sharpening strategies with a baseline Piecewise Parabolic
Method (PPM) [29] reconstruction have also been presented. The schemes have been incorporated into an incompressible
Navier–Stokes solver that uses a variant of Chorin’s artificial compressibility method to solve the equations in their time-
dependent form and uses a low-diffusion flux-splitting scheme for spatial discretization of the inviscid fluxes. Accurate re-
sults have been obtained for moving discontinuities, the Rayleigh–Taylor instability, a dam-break problem, an axisymmetric
jet instability, the Rayleigh instability, and flow within an ‘in–out’ aerated-liquid injector. The linear and modified THINC
reconstructions, implemented in a conventional MUSCL-type manner, provide very sharp resolution of volume-fraction dis-
continuities but sometimes induce ‘stair-stepping’ behavior. The modified THINC reconstruction, implemented using exact
integration of the flux of material crossing a mesh cell, provides a slightly more diffusive capturing of phase interfaces and is
nearly as robust as the baseline PPM reconstruction. This model appears quite suitable for further evaluation and testing.
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